Inertial Mass “Vortex Gravitation” Model

Inertial Mass “Vortex Gravitation” Model

What makes the Inertial Mass “Gravitation Vortex” model very powerful and useful is that it predicts Isaac Newton’s Graviation Laws and Einstein’s General Theory of Relativity.

The “Gravitation Vortex” model is describe by the following equations:

The vortex model must obey all three of Kepler’s Laws of Motion & Newton Gravitation “Circular” Force Law.

Kepler’s Third Law of Motion for the “Gravitational Vortex” is equal to an inertial gravitation parameter termed the “Inertial Gravitation Evolutiionary Attraction Rate”, which is constant throughout the gradient gravitational field; and is directly proportional to the “Net Inertial Mass” of the gravitating system vortex body.

Inertial Gravitation Evolutionary Attraction Rate – (Scalar)

{K_{Gravity}} \;= \;m_{Net}G\;=\;4\pi^2(\frac{r^{3}}{T^{2}_{Period}});=\;4\pi^2(\frac{r^3_{Schwarzschild}}{T^2_{Schwarzschild}})     ---> \frac{m^3}{s^2}

Net Inertial Mass – (Scalar)

{m_{Net}}\;=\;\sum_{i=1}^{N} m_i\;=\;{m_{1}}+{m_{2}}+{m_{3}}+ . . . . .+{m_{N}}     ---> {kg}

Schwarzschild Black Hole Event Horizon Radius

{r_{Schwarzschild}}\;=\;2(\frac{m_{Net}G}{c^2_{Light}})\; ---> {m}

Square of the Gravitation Tangential Orbiting Velocity – (Scalar)

{v^2_{Gravity}} \;=\;\frac{K_{Gravity}}{r}\;=\;\frac{m_{Net}G}{r}\;=\;4\pi^2(\frac{r^{2}}{T^{2}_{Period}})      ---> \frac{m^2}{s^2}

Kepler’s Second Law of Motion for the “Gravitational Vortex” allows each potential of the gradient gravity field to rotate or spin with a uniform, equal areas in equal times rate; and is equal to one half the “Angular Momentum” divided by twice the “Net Inertial Mass” of the gravitating system vortex body.

Specific Angular Mometum – Aerial Velocity

{(\frac{dA_{rea}}{dt})}_{Gravity}\;=\;\frac{L_{Angular-Momentum}}{2m_{Net}}\;=\;\frac{1}{2}{r}{v_{Gravity}}     ---> \frac{m^2}{s}

Newtonian Gravitational “Circular Vortex” Force Law:

{F_{Newton-Gravity-Force}}\;=\;\frac{{m_{i}}{K_{Gravity}}}{r^2}\;=\;\frac{m_{i}(4\pi^2 (\frac{r^{3}}{T^{2}_{Period}}))}{r^2}    --> \frac{kg m}{s^2}

{F_{Newton-Gravity-Force}}\;=\;\frac{m_{i}{v^2_{Gravity}}}{r}\;=\;\frac{m_{i}(2(\frac{dA_{rea}}{dt}))^2}{r^3}    --> \frac{kg m}{s^2}

{F_{Newton-Gravity-Force}}\;=\;\frac{{m_{i}}{m_{Net}G}}{r^2}    --> \frac{kg m}{s^2}

Self Gravitational “Circular Vortex” Force Law:

{F_{Self-Gravity-Force}}\;=\;\frac{{m_{Net}}{K_{Gravity}}}{r^2}\;=\;\frac{m_{Net}(4\pi^2 (\frac{r^{3}}{T^{2}_{Period}}))}{r^2}    --> \frac{kg m}{s^2}

{F_{Self-Gravity-Force}}\;=\;\frac{m_{Net}{v^2_{Gravity}}}{r}\;=\;\frac{m_{Net}(2(\frac{dA_{rea}}{dt}))^2}{r^3}    --> \frac{kg m}{s^2}

{F_{Self-Gravity-Force}}\;=\;\frac{{m^2_{Net}G}}{r^2}    --> \frac{kg m}{s^2}

Thus, the Inertial Mass Gravitational Vortex model can be used to describe what is currently being predicted by recent experiments in cosmology and general relativity.



Cite this article as:

Robert Louis Kemp; The Super Principia Mathematica – The Rage to Master Conceptual & Mathematical Physics – The General Theory of Relativity – “Inertial Mass “Vortex Gravitation” Model– Online Volume – ISBN 978-0-9841518-2-0, Volume 3; July 2010


Author: Robert Louis Kemp

This entry was posted in The General Theory of Relativity and tagged , , , , , , , . Bookmark the permalink.

3 Responses to Inertial Mass “Vortex Gravitation” Model

  1. I am impressed with this website, real I am a big fan.

  2. Shon Catella says:

    I like the helpful info you provide in your articles. I’ll bookmark your weblog and check again here regularly. I am quite sure I will learn plenty of new stuff right here! Best of luck for the next!

  3. Pingback: Britains’ Wasted Waterways: On Why Bird Killing Wind Generators Aren’t Necessary « Runnymede Institute

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s